Finding Approximate Solutions to NP-Hard Problems by Neural Networks is Hard
نویسنده
چکیده
Finding approximate solutions to hard combinatorial optimization problems by neu-ral networks is a very attractive prospect. Many empirical studies have been done in the area. However, recent research about a neural network model indicates that for any NP-hard problem the existance of a polynomial size network that solves it implies that NP=co-NP, which is contrary to the well-known conjecture that NP6 =co-NP. This paper shows that even nding approximate solutions with guaranteed performance to some NP-hard problems by a polynomial size network is also impossible unless NP=co-NP.
منابع مشابه
Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کاملSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کاملParallelizing Assignment Problem with DNA Strands
Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...
متن کاملApproximating meta-heuristics with homotopic recurrent neural networks
Much combinatorial optimisation problems constitute a nonpolynomial (NP) hard optimisation problem, i.e., they can not be solved in polynomial time. One such problem is finding the shortest route between two nodes on a graph. Meta-heuristic algorithms such as A∗ along with mixed-integer programming (MIP) methods are often employed for these problems. Our work demonstrates that it is possible to...
متن کاملMicrosoft Word - 27_37-A-_폴랜드-예정 Copyright Accepted_ 0620 Neural algorithms for solving some multi criterion optimization
In this paper, artificial neural networks for solving multiobjective optimization problems have been considered. The Tank-Hopfield model for linear programming has been extended, and then the neural model for finding Pareto-optimal solutions in the linear multi-criterion optimization problem with continuous decision variables has been discussed. Furthermore, the model for solving quasi-quadrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 41 شماره
صفحات -
تاریخ انتشار 1992